Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nature ; 624(7992): 602-610, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38093003

RESUMO

Indigenous Australians harbour rich and unique genomic diversity. However, Aboriginal and Torres Strait Islander ancestries are historically under-represented in genomics research and almost completely missing from reference datasets1-3. Addressing this representation gap is critical, both to advance our understanding of global human genomic diversity and as a prerequisite for ensuring equitable outcomes in genomic medicine. Here we apply population-scale whole-genome long-read sequencing4 to profile genomic structural variation across four remote Indigenous communities. We uncover an abundance of large insertion-deletion variants (20-49 bp; n = 136,797), structural variants (50 b-50 kb; n = 159,912) and regions of variable copy number (>50 kb; n = 156). The majority of variants are composed of tandem repeat or interspersed mobile element sequences (up to 90%) and have not been previously annotated (up to 62%). A large fraction of structural variants appear to be exclusive to Indigenous Australians (12% lower-bound estimate) and most of these are found in only a single community, underscoring the need for broad and deep sampling to achieve a comprehensive catalogue of genomic structural variation across the Australian continent. Finally, we explore short tandem repeats throughout the genome to characterize allelic diversity at 50 known disease loci5, uncover hundreds of novel repeat expansion sites within protein-coding genes, and identify unique patterns of diversity and constraint among short tandem repeat sequences. Our study sheds new light on the dimensions and dynamics of genomic structural variation within and beyond Australia.


Assuntos
Povos Aborígenes Australianos e Ilhéus do Estreito de Torres , Genoma Humano , Variação Estrutural do Genoma , Humanos , Alelos , Austrália/etnologia , Povos Aborígenes Australianos e Ilhéus do Estreito de Torres/genética , Conjuntos de Dados como Assunto , Variações do Número de Cópias de DNA/genética , Loci Gênicos/genética , Genética Médica , Variação Estrutural do Genoma/genética , Genômica , Mutação INDEL/genética , Sequências Repetitivas Dispersas/genética , Repetições de Microssatélites/genética , Genoma Humano/genética
3.
Nature ; 624(7992): 593-601, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38093005

RESUMO

The Indigenous peoples of Australia have a rich linguistic and cultural history. How this relates to genetic diversity remains largely unknown because of their limited engagement with genomic studies. Here we analyse the genomes of 159 individuals from four remote Indigenous communities, including people who speak a language (Tiwi) not from the most widespread family (Pama-Nyungan). This large collection of Indigenous Australian genomes was made possible by careful community engagement and consultation. We observe exceptionally strong population structure across Australia, driven by divergence times between communities of 26,000-35,000 years ago and long-term low but stable effective population sizes. This demographic history, including early divergence from Papua New Guinean (47,000 years ago) and Eurasian groups1, has generated the highest proportion of previously undescribed genetic variation seen outside Africa and the most extended homozygosity compared with global samples. A substantial proportion of this variation is not observed in global reference panels or clinical datasets, and variation with predicted functional consequence is more likely to be homozygous than in other populations, with consequent implications for medical genomics2. Our results show that Indigenous Australians are not a single homogeneous genetic group and their genetic relationship with the peoples of New Guinea is not uniform. These patterns imply that the full breadth of Indigenous Australian genetic diversity remains uncharacterized, potentially limiting genomic medicine and equitable healthcare for Indigenous Australians.


Assuntos
Povos Aborígenes Australianos e Ilhéus do Estreito de Torres , Genoma Humano , Variação Estrutural do Genoma , Humanos , Austrália/etnologia , Povos Aborígenes Australianos e Ilhéus do Estreito de Torres/genética , Povos Aborígenes Australianos e Ilhéus do Estreito de Torres/história , Conjuntos de Dados como Assunto , Genética Médica , Genoma Humano/genética , Variação Estrutural do Genoma/genética , Genômica , História Antiga , Homozigoto , Idioma , Nova Guiné/etnologia , Densidade Demográfica , Dinâmica Populacional
4.
Signal Transduct Target Ther ; 8(1): 400, 2023 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-37857607

RESUMO

Glioblastoma, a rare, and highly lethal form of brain cancer, poses significant challenges in terms of therapeutic resistance, and poor survival rates for both adult and paediatric patients alike. Despite advancements in brain cancer research driven by a technological revolution, translating our understanding of glioblastoma pathogenesis into improved clinical outcomes remains a critical unmet need. This review emphasises the intricate role of receptor tyrosine kinase signalling pathways, epigenetic mechanisms, and metabolic functions in glioblastoma tumourigenesis and therapeutic resistance. We also discuss the extensive efforts over the past two decades that have explored targeted therapies against these pathways. Emerging therapeutic approaches, such as antibody-toxin conjugates or CAR T cell therapies, offer potential by specifically targeting proteins on the glioblastoma cell surface. Combination strategies incorporating protein-targeted therapy and immune-based therapies demonstrate great promise for future clinical research. Moreover, gaining insights into the role of cell-of-origin in glioblastoma treatment response holds the potential to advance precision medicine approaches. Addressing these challenges is crucial to improving outcomes for glioblastoma patients and moving towards more effective precision therapies.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Criança , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Transdução de Sinais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Encéfalo/patologia , Medicina de Precisão
5.
Mol Ther Oncolytics ; 30: 167-180, 2023 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-37674626

RESUMO

Diffuse midline glioma (DMG) is a childhood brain tumor with an extremely poor prognosis. Chimeric antigen receptor (CAR) T cell therapy has recently demonstrated some success in DMG, but there may a need to target multiple tumor-specific targets to avoid antigen escape. We developed a second-generation CAR targeting an HLA-A∗02:01 restricted histone 3K27M epitope in DMG, the target of previous peptide vaccination and T cell receptor-mimics. These CAR T cells demonstrated specific, titratable, binding to cells pulsed with the H3.3K27M peptide. However, we were unable to observe scFv binding, CAR T cell activation, or cytotoxic function against H3.3K27M+ patient-derived models. Despite using sensitive immunopeptidomics, we could not detect the H3.3K27M26-35-HLA-A∗02:01 peptide on these patient-derived models. Interestingly, other non-mutated peptides from DMG were detected bound to HLA-A∗02:01 and other class I molecules, including a novel HLA-A3-restricted peptide encompassing the K27M mutation and overlapping with the H3 K27M26-35-HLA-A∗02:01 peptide. These results suggest that targeting the H3 K27M26-35 mutation in context of HLA-A∗02:01 may not be a feasible immunotherapy strategy because of its lack of presentation. These findings should inform future investigations and clinical trials in DMG.

6.
Front Oncol ; 13: 1192448, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637064

RESUMO

Introduction: Diffuse intrinsic pontine glioma (DIPG), recently reclassified as a subtype of diffuse midline glioma, is a highly aggressive brainstem tumor affecting children and young adults, with no cure and a median survival of only 9 months. Conventional treatments are ineffective, highlighting the need for alternative therapeutic strategies such as cellular immunotherapy. However, identifying unique and tumor-specific cell surface antigens to target with chimeric antigen receptor (CAR) or T-cell receptor (TCR) therapies is challenging. Methods: In this study, a multi-omics approach was used to interrogate patient-derived DIPG cell lines and to identify potential targets for immunotherapy. Results: Through immunopeptidomics, a range of targetable peptide antigens from cancer testis and tumor-associated antigens as well as peptides derived from human endogenous retroviral elements were identified. Proteomics analysis also revealed upregulation of potential drug targets and cell surface proteins such as Cluster of differentiation 27 (CD276) B7 homolog 3 protein (B7H3), Interleukin 13 alpha receptor 2 (IL-13Rα2), Human Epidermal Growth Factor Receptor 3 (HER2), Ephrin Type-A Receptor 2 (EphA2), and Ephrin Type-A Receptor 3 (EphA3). Discussion: The results of this study provide a valuable resource for the scientific community to accelerate immunotherapeutic approaches for DIPG. Identifying potential targets for CAR and TCR therapies could open up new avenues for treating this devastating disease.

7.
Methods Mol Biol ; 2691: 185-198, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37355546

RESUMO

Glioma can be modelled in the murine brain through the induction of genetically engineered mouse models or intracranial transplantation. Gliomas (oligodendroglioma and astrocytoma) are thought to arise from neuronal and glial progenitor populations in the brain and are poorly infiltrated by immune cells. An improved understanding of oligodendrocytes, astrocytes, and the immune environment throughout tumor development will enhance the analysis and development of brain cancer models. Here, we describe the isolation and analysis of murine brain cell types using a combination of flow cytometry and quantitative RT-PCR strategies to analyze these individual cell populations in vivo.


Assuntos
Astrocitoma , Neoplasias Encefálicas , Glioma , Oligodendroglioma , Camundongos , Animais , Citometria de Fluxo , Encéfalo/metabolismo , Glioma/patologia , Astrocitoma/metabolismo , Astrocitoma/patologia , Oligodendroglioma/metabolismo , Oligodendroglioma/patologia , Neoplasias Encefálicas/patologia
8.
Neurooncol Adv ; 5(1): vdad024, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152812

RESUMO

Background: Diffuse intrinsic pontine glioma (DIPG) and other diffuse midline gliomas (DMG) of the thalamus and spinal cord are rare but devastating high-grade glial tumors of childhood with no curative treatment. Despite aggressive treatment attempts the prognosis has remained poor. Chimeric antigen receptor (CAR) T cell therapy has been identified as a promising new approach in the treatment of DMG tumors; however, additional targets are urgently required given known tumor heterogeneity and the prospect of antigen escape of this cancer. Methods: Using cell surface mass spectrometry, we detected high HER2 cell surface protein across a panel of patient-derived DIPG cells, thereby identifying an existing CAR T cell therapy for use in DIPG. Primary human T cells were transduced to express a second-generation HER2 CAR and interrogated for efficacy against patient-derived DIPG cells. Results: HER2 CAR T cells demonstrated potent and antigen-specific cytotoxicity and cytokine secretion when co-cultured with patient-derived DIPG cells. Furthermore, HER2 CAR T cells provided a significant regression in intracranial DIPG xenograft tumors. Conclusions: HER2 CAR T cells are already in clinic development and are well tolerated in pediatric patients. Here we provide strong preclinical evidence for the inclusion of DIPG patients in future pediatric CNS tumor HER2 CAR T cell clinical trials.

9.
Mol Oncol ; 17(6): 946-949, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37002698

RESUMO

Synthetic biology has made it possible to rewire natural cellular responses to treat disease, notably demonstrated by chimeric antigen receptor (CAR) T cells as cancer immunotherapy. Building on the success of T-cell activation using synthetic receptors, the field is now investigating how induction of noncanonical signalling pathways and sophisticated synthetic gene circuitry can enhance the antitumour phenotype of engineered T cells. This commentary explores two recently published studies that provide proof of concept for how new technologies achieve this. The first demonstrated that non-naturally occurring combinations of signalling motifs derived from various immune receptors and arranged as a CAR drove unique signal transduction pathways in T cells and improved their tumour killing ability. Here, machine learning complemented the screening process and successfully predicted CAR T-cell phenotype dependent on signalling motif choice. The second explored how synthetic zinc fingers can be engineered into controllable transcriptional regulators, where their activity was dependent on the presence or absence of FDA-approved small-molecule drugs. These studies are pivotal in expanding the design choices available for gene circuits of the future and highlight how a single cellular therapy could respond to multiple environmental cues including target cell antigen expression, the tumour microenvironment composition and small molecule drugs.


Assuntos
Imunoterapia Adotiva , Aprendizado de Máquina , Neoplasias , Receptores de Antígenos Quiméricos , Biologia Sintética , Redes Reguladoras de Genes , Neoplasias/terapia , Humanos
10.
Clin Transl Immunology ; 12(3): e1440, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36890859

RESUMO

Objectives: Glioblastoma is a highly aggressive and fatal brain malignancy, and effective targeted therapies are required. The combination of standard treatments including surgery, chemotherapy and radiotherapy is not curative. Chimeric antigen receptor (CAR) T cells are known to cross the blood-brain barrier, mediating antitumor responses. A tumor-expressed deletion mutant of the epidermal growth factor receptor (EGFRvIII) is a robust CAR T cell target in glioblastoma. Here, we show our de novo generated, high-affinity EGFRvIII-specific CAR; GCT02, demonstrating curative efficacy in human orthotopic glioblastoma models. Methods: The GCT02 binding epitope was predicted using Deep Mutational Scanning (DMS). GCT02 CAR T cell cytotoxicity was investigated in three glioblastoma models in vitro using the IncuCyte platform, and cytokine secretion with a cytometric bead array. GCT02 in vivo functionality was demonstrated in two NSG orthotopic glioblastoma models. The specificity profile was generated by measuring T cell degranulation in response to coculture with primary human healthy cells. Results: The GCT02 binding location was predicted to be located at a shared region of EGFR and EGFRvIII; however, the in vitro functionality remained exquisitely EGFRvIII specific. A single CAR T cell infusion generated curative responses in two orthotopic models of human glioblastoma in NSG mice. The safety analysis further validated the specificity of GCT02 for mutant-expressing cells. Conclusion: This study demonstrates the preclinical functionality of a highly specific CAR targeting EGFRvIII on human cells. This CAR could be an effective treatment for glioblastoma and warrants future clinical investigation.

11.
Haematologica ; 108(1): 83-97, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35770527

RESUMO

Patients with refractory relapsed multiple myeloma respond to combination treatment with elotuzumab and lenalidomide. The mechanisms underlying this observation are not fully understood. Furthermore, biomarkers predictive of response have not been identified to date. To address these issues, we used a humanized myeloma mouse model and adoptive transfer of human natural killer (NK) cells to show that elotuzumab and lenalidomide treatment controlled myeloma growth, and this was mediated through CD16 on NK cells. In co-culture studies, we showed that peripheral blood mononuclear cells from a subset of patients with refractory relapsed multiple myeloma were effective killers of OPM2 myeloma cells when treated with elotuzumab and lenalidomide, and this was associated with significantly increased expression of CD54 on OPM2 cells. Furthermore, elotuzumab- and lenalidomide-induced OPM2 cell killing and increased OPM2 CD54 expression were dependent on both monocytes and NK cells, and these effects were not mediated by soluble factors alone. At the transcript level, elotuzumab and lenalidomide treatment significantly increased OPM2 myeloma cell expression of genes for trafficking and adhesion molecules, NK cell activation ligands and antigen presentation molecules. In conclusion, our findings suggest that multiple myeloma patients require elotuzumab- and lenalidomide-mediated upregulation of CD54 on autologous myeloma cells, in combination with NK cells and monocytes to mediate an effective anti-tumor response. Furthermore, our data suggest that increased myeloma cell CD54 expression levels could be a powerful predictive biomarker for response to elotuzumab and lenalidomide treatment.


Assuntos
Mieloma Múltiplo , Animais , Camundongos , Humanos , Lenalidomida/farmacologia , Lenalidomida/uso terapêutico , Lenalidomida/metabolismo , Mieloma Múltiplo/metabolismo , Monócitos/metabolismo , Leucócitos Mononucleares/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Células Matadoras Naturais , Dexametasona/uso terapêutico
12.
Elife ; 112022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35506657

RESUMO

De novo-designed receptor transmembrane domains (TMDs) present opportunities for precise control of cellular receptor functions. We developed a de novo design strategy for generating programmed membrane proteins (proMPs): single-pass α-helical TMDs that self-assemble through computationally defined and crystallographically validated interfaces. We used these proMPs to program specific oligomeric interactions into a chimeric antigen receptor (CAR) that we expressed in mouse primary T cells and found that both in vitro CAR T cell cytokine release and in vivo antitumor activity scaled linearly with the oligomeric state encoded by the receptor TMD, from monomers up to tetramers. All programmed CARs stimulated substantially lower T cell cytokine release relative to the commonly used CD28 TMD, which we show elevated cytokine release through lateral recruitment of the endogenous T cell costimulatory receptor CD28. Precise design using orthogonal and modular TMDs thus provides a new way to program receptor structure and predictably tune activity for basic or applied synthetic biology.


Assuntos
Antígenos CD28 , Receptores de Antígenos Quiméricos , Animais , Antígenos CD28/metabolismo , Citocinas/metabolismo , Camundongos , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Ensaios Antitumorais Modelo de Xenoenxerto
13.
J Immunother Cancer ; 10(4)2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35379738

RESUMO

Genetically engineered T cells have been successfully used in the treatment of hematological malignancies, greatly increasing both progression-free and overall survival in patients. However, the outcomes of patients treated with Chimeric Antigen Receptor (CAR) T cells targeting solid tumors have been disappointing. There is an unmet clinical need for therapies which are specifically designed to overcome the challenges associated with solid tumors such as tumor heterogeneity and antigen escape. Genetic engineering employing the use of biological logic gating in T cells is an emerging and cutting-edge field that may address these issues. The advantages of logic gating include localized secretion of anti-tumor proteins into the tumor microenvironment, multi antigen targeting of tumors and a potential increase in safety when targeting tumor antigens which may not be exclusively tumor specific. In this review, we introduce the concept of biological logic gating and how this technology addresses some of the challenges of current CAR T treatment. We outline the types of logic gating circuits and finally discuss the application of this new technology to engineered T cells, in the treatment of cancer.


Assuntos
Neoplasias , Linfócitos T , Humanos , Lógica , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T , Microambiente Tumoral
14.
Cell Death Differ ; 29(7): 1335-1348, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35332309

RESUMO

Glioblastoma multiforme (GBM) is the most common and aggressive form of brain cancer, with treatment options often constrained due to inherent resistance of malignant cells to conventional therapy. We investigated the impact of triggering programmed cell death (PCD) by using BH3 mimetic drugs in human GBM cell lines. We demonstrate that co-targeting the pro-survival proteins BCL-XL and MCL-1 was more potent at killing six GBM cell lines compared to conventional therapy with Temozolomide or the bromodomain inhibitor JQ1 in vitro. Enhanced cell killing was observed in U251 and SNB-19 cells in response to dual treatment with TMZ or JQ1 combined with a BCL-XL inhibitor, compared to single agent treatment. This was reflected in abundant cleavage/activation of caspase-3 and cleavage of PARP1, markers of apoptosis. U251 and SNB-19 cells were more readily killed by a combination of BH3 mimetics targeting BCL-XL and MCL-1 as opposed to dual treatment with the BCL-2 inhibitor Venetoclax and a BCL-XL inhibitor. The combined loss of BAX and BAK, the essential executioners of intrinsic apoptosis, rendered U251 and SNB-19 cells refractory to any of the drug combinations tested, demonstrating that apoptosis is responsible for their killing. In an orthotopic mouse model of GBM, we demonstrate that the BCL-XL inhibitor A1331852 can penetrate the brain, with A1331852 detected in both tumour and healthy brain regions. We also investigated the impact of combining small molecule inducers of ferroptosis, erastin and RSL3, with BH3 mimetic drugs. We found that a BCL-XL or an MCL-1 inhibitor potently cooperates with inducers of ferroptosis in killing U251 cells. Overall, these findings demonstrate the potential of dual targeting of distinct PCD signalling pathways in GBM and may guide the utility of BCL-XL inhibitors and inducers of ferroptosis with standard of care treatment for improved therapies for GBM.


Assuntos
Antineoplásicos , Ferroptose , Glioblastoma , Animais , Antineoplásicos/farmacologia , Apoptose , Linhagem Celular Tumoral , Glioblastoma/tratamento farmacológico , Humanos , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Temozolomida/farmacologia , Proteína bcl-X/metabolismo
15.
Cancers (Basel) ; 13(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34439399

RESUMO

In recent decades, adoptive cell transfer and checkpoint blockade therapies have revolutionized immunotherapeutic approaches to cancer treatment. Advances in whole exome/genome sequencing and bioinformatic detection of tumour-specific genetic variations and the amino acid sequence alterations they induce have revealed that T cell mediated anti-tumour immunity is substantially directed at mutated peptide sequences, and the identification and therapeutic targeting of patient-specific mutated peptide antigens now represents an exciting and rapidly progressing frontier of personalized medicine in the treatment of cancer. This review outlines the historical identification and validation of mutated peptide neoantigens as a target of the immune system, and the technical development of bioinformatic and experimental strategies for detecting, confirming and prioritizing both patient-specific or "private" and frequently occurring, shared "public" neoantigenic targets. Further, we examine the range of therapeutic modalities that have demonstrated preclinical and clinical anti-tumour efficacy through specifically targeting neoantigens, including adoptive T cell transfer, checkpoint blockade and neoantigen vaccination.

17.
Clin Transl Immunology ; 10(5): e1283, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33976881

RESUMO

OBJECTIVES: The increasing success of Chimeric Antigen Receptor (CAR) T cell therapy in haematological malignancies is reinvigorating its application in many other cancer types and with renewed focus on its application to solid tumors. We present a novel CAR against glioblastoma, an aggressive, malignant glioma, with a dismal survival rate for which treatment options have remained unchanged for over a decade. METHODS: We use the human Retained Display (ReD) antibody platform (Myrio Therapeutics) to identify a novel single-chain variable fragment (scFv) that recognises epidermal growth factor receptor mutant variant III (EGFRvIII), a common and tumor-specific mutation found in glioblastoma. We use both in vitro functional assays and an in vivo orthotopic xenograft model of glioblastoma to examine the function of our novel CAR, called GCT02, targeted using murine CAR T cells. RESULTS: Our EGFRvIII-specific scFv was found to be of much higher affinity than reported comparators reverse-engineered from monoclonal antibodies. Despite the higher affinity, GCT02 CAR T cells kill equivalently but secrete lower amounts of cytokine. In addition, GCT02-CAR T cells also mediate rapid and complete tumor elimination in vivo. CONCLUSION: We present a novel EGFRvIII-specific CAR, with effective antitumor functions both in in vitro and in a xenograft model of human glioblastoma.

18.
Int J Mol Sci ; 21(19)2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-33027962

RESUMO

T cells follow a triphasic distinct pathway of activation, proliferation and differentiation before becoming functionally and phenotypically "exhausted" in settings of chronic infection, autoimmunity and in cancer. Exhausted T cells progressively lose canonical effector functions, exhibit altered transcriptional networks and epigenetic signatures and gain constitutive expression of a broad coinhibitory receptor suite. This review outlines recent advances in our understanding of exhausted T cell biology and examines cellular and molecular mechanisms by which a state of dysfunction or exhaustion is established, and mechanisms by which exhausted T cells may still contribute to pathogen or tumour control. Further, this review describes our understanding of exhausted T cell heterogeneity and outlines the mechanisms by which checkpoint blockade differentially engages exhausted T cell subsets to overcome exhaustion and recover T cell function.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Ativação Linfocitária/imunologia , Neoplasias/tratamento farmacológico , Neoplasias/imunologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Diferenciação Celular/genética , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Ativação Linfocitária/efeitos dos fármacos , Neoplasias/genética , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/imunologia
19.
Am J Hum Genet ; 107(2): 175-182, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32763188

RESUMO

Expanded carrier screening (ECS) for recessive monogenic diseases requires prior knowledge of genomic variation, including DNA variants that cause disease. The composition of pathogenic variants differs greatly among human populations, but historically, research about monogenic diseases has focused mainly on people with European ancestry. By comparison, less is known about pathogenic DNA variants in people from other parts of the world. Consequently, inclusion of currently underrepresented Indigenous and other minority population groups in genomic research is essential to enable equitable outcomes in ECS and other areas of genomic medicine. Here, we discuss this issue in relation to the implementation of ECS in Australia, which is currently being evaluated as part of the national Government's Genomics Health Futures Mission. We argue that significant effort is required to build an evidence base and genomic reference data so that ECS can bring significant clinical benefit for many Aboriginal and/or Torres Strait Islander Australians. These efforts are essential steps to achieving the Australian Government's objectives and its commitment "to leveraging the benefits of genomics in the health system for all Australians." They require culturally safe, community-led research and community involvement embedded within national health and medical genomics programs to ensure that new knowledge is integrated into medicine and health services in ways that address the specific and articulated cultural and health needs of Indigenous people. Until this occurs, people who do not have European ancestry are at risk of being, in relative terms, further disadvantaged.


Assuntos
Metagenômica/métodos , Grupos Populacionais/genética , Austrália , Variação Genética/genética , Humanos
20.
Int J Mol Sci ; 21(2)2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-31947597

RESUMO

Oncology immunotherapy has been a significant advancement in cancer treatment and involves harnessing and redirecting a patient's immune response towards their own tumour. Specific recognition and elimination of tumour cells was first proposed over a century ago with Paul Erlich's 'magic bullet' theory of therapy. In the past decades, targeting cancer antigens by redirecting T cells with antibodies using either bispecific T cell engagers (BiTEs) or chimeric antigen receptor (CAR) T cell therapy has achieved impressive clinical responses. Despite recent successes in haematological cancers, linked to a high and uniformly expressed CD19 antigen, the efficacy of T cell therapies in solid cancers has been disappointing, in part due to antigen escape. Targeting heterogeneous solid tumours with T cell therapies will require the identification of novel tumour specific targets. These targets can be found among a range of cell-surface expressed antigens, including proteins, glycolipids or carbohydrates. In this review, we will introduce the current tumour target antigen classification, outline existing approaches to discover novel tumour target antigens and discuss considerations for future design of antibodies with a focus on their use in CAR T cells.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Animais , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Antígenos de Neoplasias/imunologia , Técnicas de Visualização da Superfície Celular , Engenharia Genética , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Proteômica/métodos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...